Week 3: COMP-801 - Integrated
Computing Practice

Agenda

e Feedback to Active Reading 2
e Review of tools, concepts, and techniques
o git commands, docstring, test cases, f-string

o function defintion and call, flow of execution, iteration
e Dare2Design activity
e Help session:

o Lab 2 collaborative learning work

o Markdown basics

Feedback to AR2

e See AR2 Feedback in the Canvas Module for Week3
e AR assignment MUST be completed BEFORE starting on
o program development assignments (lab# or h#)
e New deadline for ARs starting this week: Monday midnight

LJ Remote git Repositories

e What is a remote repository?

e How does a local repository know what remote repository it
is linked to?

e What does push command do?
o What is origin ?
o What is main ?

LJ git Commands

e How do we prepare to commit changes we made in the
working directory?

e How do we commit the changes?
o What should the commit message say?

e How do we display the commit history?

e Where is the commit history stored?

LJ Document Your Code

e What is a docstring? What's the docstring's syntax?

e Where do we write docstrings in a Python module?

e What are the components of a docstring?
o when it documents a module?
o when it documents a function (or method) definition?
o when it documents a class definition?

e How do we use VS Code restructuredText to format
docstrings?

docstring Example

def my_filter(words, prefix):

Return a list of strings in "words that do not start with “prefix .

:param words: 1list of strings that do not contali white spaces
:param prefix: string with no white spaces

:return: 1list of strings

Example:

my_filter(['ball', 'break', 'bad', 'bet'], 'ba'l])

returns ['break', 'bet']

LJ Test Cases

nat is a test case?

nat is a "happy path" test case?

nat is an "edge case"?

nat is an illegal argument test case?

= ===

LJ Python f-string Example

"""Test input list with three elements."""
input_1st = [3, 2, 7]

expected_result = 2

actual_result = minimum(input_1lst)

err_msg = (
f'minimum({input_1st}) must be {expected_result}, '

f'not {actual_result}'
)

assert expected_result == actual_result, err_msg

(J Function Definition

e What is the syntax of a function definition?
o |ldentify all components
o Explain what each does
e Give an example of a function definition
e How is a function definition documented in a docstring?

10

LJ Function Call

e What is the syntax of a function call?

o |ldentify all components

o Explain what each does
e How is a function call different from a function definition?
e Give an example of a function call

o How is a function call used? Where?

11

LJ Example of Function Definition and Call

function name parameters

function body

-def increment(operand): (indented)

increased = operand + 1
return increased
, return value
return_value = increment(2)
print(return_value)

=] o v B W N

function call arguments

12

LJ Flow of Execution

e What is the flow of execution?
e What is the default flow of execution?
e What statements change the flow of execution? How?

13

LJ Iteration

e What is the syntax of the for ... in ... loop?

o Name and explain each component.
e What is the syntax of the while ... loop?

o Name and explain each component.

14

(J for ... in ... loop

iteration variable

1 item prices = [3.56, 2.53, 8.92]

2 bill amount = 0.0 iterable (str, list, dict, etc.)
3- for price in item prices:

4 bill amount = bill amount + price

5 print(bill amount)

next statement
loop body (indented) (outside the loop)

Dare2Design Activite

e Individually

o Write the code based on the design description
e |[n teams of 2 members

o Review and discuss your designs
e Teams report out to the entire class

16

LJ Accumulation Pattern

e What is the accumulation pattern?
e What are the components of the pattern?
e Give an example of the accumulation pattern to illustrate it.

17

LJ Design Descriptions - The Idea

Just the idea:

e The problem's input has a list of words and a string prefix.

e To solve the problem
o Define a list variable that will return the result.
o |terate through each word in the words list

o Check if each word starts with the prefix
If it does not, append the word to the result

3. After the iteration ends, return the results

18

LJ Design Descriptions - Steps 1 & 2

Define Accumulator and Iterate

e Step 1. Create variable modified_list and initialize it with
empty list.
o This is done to store the words which doesn't start with the
given prefix
e Step 2:
o Start a for-loop to iterate over the list words
o Define the loop variable a_word of type string so that
every word can be accessed to perform necessary
operations

19

LJ Design Descriptions - Steps 3, 4, 5

Transform and Accumulate
Inside the for-loop, at each iteration through the loop:

e Step 3: Check if a_word in the list starts with given prefix.

o Use a str operation or method to do the checking.

e Step 4: If the word doesn't start with given prefix then
append a_word to modified_list

e Step 5: Repeat the same steps - 3, 4 - for every a_word in
words

20

LJ Design Descriptions - Step 6

Return

e Step 6. After the for loop execution is completed return the
modified_list .

21

Lab2: Getting Started

Use collaborative learning to do Lab2, working with the
assigned peer.

e Verify you have all the tools you need on your laptop
o git-bash (or terminal), VS Code, git, GitHub account

e Get the Lab2 codebase from the GitHub Classroom invitation
link

22

Lab2: Document Your Code

e Follow Lab 2 instructions to complete the modules'
docstrings .

Version control this development step.

23

Lab2: Write the Tests

Write testing functions for the only_integers() method.

e Refer to Testing Requirements in the Test-Driven and
Incremental Development resource

e Implement the 2nd testing function following the example of
the 1st testing function.

Version control this development step.

24

https://integrated-practicum.github.io/integrated-computing-practice-website/assignments/test-driven-incremental-development/

Lab2: Draft the Design

Write the design of the only_integers() method.

e Refer to Design Requirements in the Test-Driven and
Incremental Development resource
e Write the design in DESIGN.md

Version control this unit of development.

25

https://integrated-practicum.github.io/integrated-computing-practice-website/assignments/design-requirements/

Lab2: Write the Implementation

Teams work on the implementation of only_integers()

e Refer to Implementation Requirements in the Test-Driven
and Incremental Development resource
e Write the implementation in sentence.py

Version control this unit of development.

26

https://integrated-practicum.github.io/integrated-computing-practice-website/assignments/coding-requirements/

Lab2: Finish Development

Teams work to finish the development

e Check the Problems panel and fix the warnings and errors
e Use black formatter extension to help with automatic fixing

e Install and run pycodestyle to check and fix additional
errors

Version control this unit of development.

27

Markdown

e Lightweight markup language with plain-text-formatting
syntax
e We use it for readme, design documents, change logs, etc.

Markdown Tutorial

28

https://commonmark.org/help/tutorial/

Markdown Summary

M+ # Title Untitled-1 ® 03 240 [0 --- Preview Untitled-1

1 # Title
2 .
3 ## Heading Tltle
A
5 Normal text, in **bold** and

1talics®. Headlng
6
7 " “python Normal text, in bold and italics.
8 # Some Python code
9 def function name():
10 return # Some Python code
11 " = def function_name():
12 - Also, lists return
13 1. fTirst
14 2. second
15 - (Ordered and unordered, even e Also, lists

nested) 1. first
16 |

2. second

¢ (Ordered and unordered,

even nested)

