Week 2: COMP-801 - Integrated
Computing Practice

Agenda

e Feedback on AR
e Command-line interface (CLI) basics

e Getting started on lab1
e Review and highlight concepts from AR1 and AR2

Feedback on AR1

e Browse through AR1 student progress report
e Answer and discuss select AR1T questions

Command-Line Interface (CLI) Basiscs

e Review CLI Basics resource in Week 2 module in Canvas
e Form teams of 2 students to collaborate
o Team members should have the same operating systems (if
possible)
e Open a CLI at the system level, switch to bash, try to
deactiavte conda

e Install pytest

Getting labl Assignment

In the CLI (terminal) of our operating system:

e Change directory to home directory
e Create comp801 in home directory
e Create subfolders 1labs, homework ,h practice in comp801

e Follow Lab 1 instructions to get access tot he lab1 starter
project.

Visual Studio: Getting started

Open VS Code, from File --> Open Folder..., select lab1

e Clone starter project lab1 as instructed in Lab 1 description
(Canvas Lab1 page)

e Examine project structure: core.py, client.py,
test_div_nums.py and test_last_chars.py

e Run each module
e Run the tests using pytest tool

Lab1: First Development Step

e Document .py modules as instructed in Lab 1

e Do version control for this step of development
e Write the 2nd testing function for div_nums() function

LJ Values and Variables

e Value - Unit of data, such as
o a number (integer 3, float 7.5)

o a string ("hi" , 'hi' , """hi""")

o a Boolean value (True, False)

o a list of values ([1, 2, 3], ['hi', True, 3.5])
o and more

e Variable
o Name (identifier) that references an object

LJ Operators

e Operators
o arithmetic (2 + 3)
o comparison (2 < 3, 2 == 3)
o Boolean (logical) (not True, True and False)
o sequence operations: indexing [], slicing [:],
concatenation +
o membership operation: in
o and more ...

LJ Expressions and Statements

e EXpression
o Computation that produces a SINGLE value
o Made up of values, variables, operators, and other
expressions
e Statement
o Computation that performs an action
o Made up of keywords, delimiters, expressions, and other
statements

10

LJ Flow of Control

Control flow of execution in a program is sequential UNLESS it
is altered by:

e Function calls

e Loops

e Conditionals

e and other statements (e.g. break, continue, return,

except , raise)

LJ Control Structures

Alter the flow of execution control.

e Loop
o repeats statements in the body of the loop until
termination condition is reached
e Conditional
o selects a branch of statements to execute based on
selection condition

12

LJ For loop Components

iteration variable

1 item prices = [3.56, 2.53, 8.92]

2 bill amount = 0.0 iterable (str, list, dict, etc.)
3- for price in item prices:

4 bill amount = bill amount + price

5 print(bill amount)

next statement
loop body (indented) (outside the loop)

LJ Functions

A function

e isa named sequence of statements that perform a useful
task

e may be defined with parameters

e may OR may not produce a return value

14

(J Function Definition

e Function definition might have parameters

e Parameters are variables or names
o defined in the function header
o refer to the values passed as arguments by the call
o used in the function body

15

LJ Function Definition Example

function name parameters

function body

-def increment(operand): (indented)

increased = operand + 1
return increased
, return value
return_value = increment(2)
print(return_value)

=] o v B W N

function call arguments

16

LJ Function Call

Alters the control flow

e jumps to the function definition
e executes function's statements, and
e resumes from statement following function call

17

LJ Function Call Arguments

A function call might require arguments
Argument is the value passed into a function when it is called

e as simple as a number or string or other literal
e OR an expression
e OR another function call that returns a value

18

LJ Function Return Value

e Areturn value is the value produced when a function is
executed
e Not all functions may return a value

19

Document Your Code

e Write a docstring (triple double quotes)
o Module: at the top of the module file
o Function definition: indented and below the function
header
o Class definition: indented and below the class header
o Method definition: indented and below the method
header

20

What to Document

e In the function documentation docstring, explain concisely

o what the function does, with no details about how it does
it
o Parameters:

= brief description and data type
o Returns:

= what the function returns (if any) and its data type

21

docstring Example

def size(sentence):

Return the size of sentence.

:param sentence: str
:return: int, size of the sentence

22

PEP 8 Naming Conventions

e PEP 8 Style Guide for Python Code
e Google Python Style Guide

Type Public
Packages lower with _under
Modules lower with_under
Classes CapWords
Exceptions CapWords
Functions lower with _under()
Global/Class Constants CAPS WITH UNDER
Global/Class Variables lower with under
Instance Variables lower_with_under
Method Names lower with _under()

Function/Method Parameters lower with_under
Local Variables lower with under

Syntax and Style Code Analyzers

pylint

o Checks for errors, coding standards, "code smells"

pycodestyle
o Checks some style conventions in PEP 8

o Does NOT check naming conventions and docstrings

flake8
o Checks all of the above with plugins
Install VS Code extensions: black formatter ,

pylint , and flake8
Using pip (or pip3), installe pycodestyle

py lance ,

24

Code Smells

e CodeSmell, Martin Fowler and Ken Beck
e Finding Code Smells, Al Swaigart

25

https://martinfowler.com/bliki/CodeSmell.html
https://inventwithpython.com/beyond/chapter5.html

